CTP431: Fundamentals of Computer Music

Digital Audio

K』1ST Graduate School of Culture Technology

Juhan Nam

Digital Audio Chain

Microphones

- Convert vibrations in air to electrical signals
- Dynamic mic
- Fleming's right-hand rule
- Vocal or drum in a live setting

- Condenser mic

Dynamic mic

- $\mathrm{Q}=\mathrm{CV}$ (capacitor)
- Need phantom power
- Studio recording
- Sensitive and accurate: capture delicate sounds (quite or high-frequency sound)
- Expensive

Rode NT1A

Loudspeakers

- Convert electrical signals back to vibrations in air
- Similar to dynamic mic in principle: Fleming's left-hand rule
- Crossover networks: bass / midrange / tweeter

Sampling

- Convert continuous-time signals to discrete-time signals by periodically picking up the instantaneous values
- Represented as a sequence of numbers
- Sampling period $\left(T_{s}\right)$: the amount of time between samples
- Sampling rate $\left(f_{s}=1 / T_{s}\right)$: the number of samples per second

Sampling Theorem

- How can we determine the sampling rate?
- Too high: increase the number of samples
- Too low: cannot reconstruct the original signal
- Sampling Theorem
- The sampling rate must be greater than twice the maximum frequency in the signal in order to reconstruct the original signal

$$
f_{s}>2 \cdot f_{M}
$$

f_{s} : sampling rate
f_{M} : maximum frequency of the signal

Sampling Theorem

Aliasing

$f=f_{0}$
$f=f_{0}+f_{s}$ (Alias)

$$
f_{s}=6 \mathrm{~Hz} \quad f=3 \mathrm{~Hz}
$$

$f_{s}=6 \mathrm{~Hz} f=9 \mathrm{~Hz}$

$$
f=f_{0}+2 f_{s}
$$

(Alias)

$$
f_{s}=6 \mathrm{~Hz} \quad f=12 \mathrm{~Hz}
$$

Aliasing

- A continuous-time sinusoid with frequency f_{0} is sampled:

$$
\begin{aligned}
& x(t)=A \sin \left(2 \pi f_{0} t+\phi\right) \\
& x(t)=A \sin \left(2 \pi\left(f_{0} \pm l f_{s}\right) t+\phi\right) \longrightarrow \quad x(n) \rightarrow x\left(n / f_{s}\right) \\
&(l=1,2,3, \ldots) \\
&=A \sin \left(2 \pi f_{0} n / f_{s}+\phi\right) \\
&=A \sin \left(2 \pi f_{0} n / f_{s} \pm 2 \pi l n+\phi\right) \\
&=A \sin \left(2 \pi f_{0} n / f_{s}+\phi\right)
\end{aligned}
$$

- The sampled sinusoid with frequency f_{0} has aliases at $f_{0} \pm l f_{s}$

Sampling in the Frequency Domain

The original signal can be reconstructed using a lowpass filter

Sampling in the Frequency Domain: Aliasing

The high-frequency content above half the sampling rate (Nyquist rate) is folded over

Sampling in the Frequency Domain: Lowpass filtering

$$
\begin{gathered}
x(n) \\
\left(f_{s}=2 \cdot f_{M}\right)
\end{gathered}
$$

Lowpass filter in Sampling

- The lowpass filter is implemented as an analog circuit when it is used before the audio-to-digital conversion in the digital audio system

Reconstruction of Sampled Audio

- The ideal low-pass corresponds to convolution with the sinc function in the time domain
- In practice, DACs are composed of sample-and-hold and low-pass filtering circuits

Frequency domain

(c)

(a)

(b)

(c)

Before sampling

After sampling

Reconstruction

Sampling Rate in Audio Standard

- Determined by the maximum frequency of signals

Quantization

- Round the amplitude to the nearest discrete steps
- The number of discrete steps are determined by the bit depth
- N bits range from -2^{N-1} to $2^{N-1}-1: 8$ bit (-128 to 127), 16 bit (-32767 to 32766)

Bit Depth and Dynamic Range

- Bit depth determines dynamic range of digital signals
- Dynamic range $=20 \log _{10}($ maximum value $/$ minimum value $)$
- 8 bits $=20 \log _{10}(127 / 1) \approx 48 \mathrm{~dB}$
- 16 bit $=20 \log _{10}(32766 / 1) \approx 96 \mathrm{~dB}$
- Adding one bit (x2) increases $6 \mathrm{~dB}: N$ bits $\approx 6 \mathrm{NdB}$

Bit Depth in Audio Standard

- Determine bit depth to cover the dynamic range of audio content

Error in Uniform Quantization

- Quantization causes noise
- Average power of quantization noise: obtained from the probability density function (PDF) of the error

Root mean square (RMS) of noise

$$
\sqrt{\int_{-1 / 2}^{1 / 2} x^{2} p(e) d x}=\sqrt{1 / 12}
$$

- Signal to Noise Ratio (SNR)
- Based on average power

$$
20 \log _{10} \frac{S_{\mathrm{rms}}}{N_{\mathrm{rms}}}=20 \log _{10} \frac{2^{B-1} / \sqrt{2}}{\sqrt{1 / 12}}=6.02 B+1.76 \mathrm{~dB}
$$

(With 16bits, SNR = 98.08dB)

- Based on the max levels $20 \log _{10} \frac{S_{\text {max }}}{N_{\text {max }}}=20 \log _{10} \frac{\frac{}{2}^{B-1}}{1 / 2}=6.02 B \mathrm{~dB}$

Dynamic Range

- Dynamic range

- The ratio between the loudest and softest levels

Clipping and Headroom

- Clipping
- Non-linear distortion that occurs when a signal is above the max level
- Headroom
- Margin between the peak level and the max level

In digital audio, 0 dB is regarded as the maximum level

$$
B=16 \text { bits }
$$

Digital Audio Standards

- Compact disc
- Sampling rate: $44.1 \mathrm{kHz}:>2 \times 20 \mathrm{kHz}$
- Bit depth: 16 bits: $\mathrm{SNR}=98.08 \mathrm{~dB}$
- Blu-ray disc / professional audio
- Sampling rate: 48 / $96 / 192 \mathrm{kHz}$: > $2 \times 20 \mathrm{kHz}$
- Bit depth: 16/20/24 bits
- Telephone
- Sampling rate: 8 / 16 kHz
- Bit depth: 8 bits

