CTP431: Fundamentals of Computer Music

Digital Audio

Juhan Nam

Microphones

- Convert vibrations in air to electrical signals
- Dynamic mic
 - Fleming's right-hand rule
 - Vocal or drum in a live setting
- Condenser mic
 - Q = CV (capacitor)
 - Need phantom power
 - Studio recording
 - Sensitive and accurate: capture delicate sounds (quite or high-frequency sound)
 - Expensive

Source: http://www.shure.com/americas/support/find-an-answer/difference-between-a-dynamic-and-condenser-microphone Source: http://en.rode.com/microphones/nt1-a Source: https://www.shure.com/en-US/products/microphones/sm58

Dynamic mic

Condenser mic

- Convert electrical signals back to vibrations in air
- Similar to dynamic mic in principle: Fleming's left-hand rule
- Crossover networks: bass / midrange / tweeter

Genelec 8050B

2-way monitor speaker

Sampling

- Convert **continuous-time** signals to **discrete-time** signals by periodically picking up the instantaneous values
 - Represented as a sequence of numbers
 - Sampling period (T_s) : the amount of time between samples
 - **Sampling rate** $(f_s = 1/T_s)$: the number of samples per second

Sampling Theorem

- How can we determine the sampling rate?
 - Too high: increase the number of samples
 - Too low: cannot reconstruct the original signal

- Sampling Theorem
 - The sampling rate must be greater than twice the maximum frequency in the signal in order to reconstruct the original signal

$$f_s > 2 \cdot f_M$$

f_s: sampling rate

 f_M : maximum frequency of the signal

Sampling Theorem

Aliasing

1.0 0.5 Amplitude 0.0 $f = f_0$ -0.5 $f_s = 6 Hz$ f = 3 Hz-1.0 0.2 0.4 0.6 0.8 1.0 0.0 1.0 0.5 Amplitude $f = f_0 + f_s$ 0.0 -0.5 (Alias) $f_s = 6 Hz f = 9 Hz$ -1.0 1.0 0.4 0.6 0.8 0.0 0.2 1.0 0.5 Amplitude $f = f_0 + 2f_s$ 0.0 -0.5 (Alias) $f_s = 6 Hz f = 12 Hz$ -1.0 1.0 0.0 0.2 0.4 0.6 0.8 Time(s)

Aliasing

• A continuous-time sinusoid with frequency f_0 is sampled:

$$x(t) = A \sin(2\pi f_0 t + \phi) \qquad \xrightarrow{x(t) \to x(n/f_s)} \qquad x(n) = A \sin(2\pi f_0 n/f_s + \phi)$$

$$x(t) = A \sin(2\pi (f_0 \pm lf_s)t + \phi) \qquad \xrightarrow{x(n)} \qquad x(n) = A \sin(2\pi (f_0 \pm lf_s)n/f_s + \phi)$$

$$(l = 1, 2, 3, ...) \qquad = A \sin(2\pi f_0 n/f_s \pm 2\pi ln + \phi)$$

$$= A \sin(2\pi f_0 n/f_s \pm 2\pi ln + \phi)$$

• The sampled sinusoid with frequency f_0 has **aliases** at $f_0 \pm lf_s$

Sampling in the Frequency Domain

The original signal can be reconstructed using a lowpass filter

Sampling in the Frequency Domain: Aliasing

The high-frequency content above half the sampling rate (Nyquist rate) is folded over

Sampling in the Frequency Domain: Lowpass filtering

Lowpass filter in Sampling

• The lowpass filter is implemented as an analog circuit when it is used before the audio-to-digital conversion in the digital audio system

Reconstruction of Sampled Audio

- The ideal low-pass corresponds to convolution with the sinc function in the time domain
 - In practice, DACs are composed of sample-and-hold and low-pass filtering circuits

Sampling Rate in Audio Standard

• Determined by the maximum frequency of signals

Quantization

- Round the amplitude to the nearest discrete steps
 - The number of discrete steps are determined by the bit depth
 - *N* bits range from -2^{N-1} to $2^{N-1}-1$: 8 bit (-128 to 127), 16 bit (-32767 to 32766)

Bit Depth and Dynamic Range

- Bit depth determines dynamic range of digital signals
- Dynamic range = 20log₁₀(maximum value /minimum value)
 - 8 bits = $20\log_{10}(127/1) \approx 48$ dB
 - 16 bit = $20\log_{10}(32766/1) \approx 96dB$
 - Adding one bit (x2) increases 6dB : N bits \approx 6N dB

Bit Depth in Audio Standard

• Determine bit depth to cover the dynamic range of audio content

Error in Uniform Quantization

- Quantization causes noise
 - Average power of quantization noise: obtained from the probability density function (PDF) of the error P(e) Root mean square (RMS) of noise

1/2

$$\sqrt{\int_{-1/2}^{1/2} x^2 p(e) dx} = \sqrt{\frac{1}{12}}$$

RMS of full-scale sine wave

• Signal to Noise Ratio (SNR) • Based on average power $20 \log_{10} \frac{S_{\text{rms}}}{N_{\text{rms}}} = 20 \log_{10} \frac{2^{B-1}/\sqrt{2}}{\sqrt{1/2}} = 6.02B + 1.76 \text{ dB}$ (With 16bits, SNR = 98.08dB)

-1/2

• Based on the max levels $20 \log_{10} \frac{S_{\text{max}}}{N_{\text{max}}} = 20 \log_{10} \frac{2^{B-1}}{\frac{1}{2}} = 6.02B \, \text{dB}$

(With 16bits, SNR = 96.32 dB)

Dynamic Range

- Dynamic range
 - The ratio between the loudest and softest levels

Clipping and Headroom

- Clipping
 - Non-linear distortion that occurs when a signal is above the max level
- Headroom

Digital Audio Standards

- Compact disc
 - Sampling rate: 44.1 kHz: > 2 x 20 kHz
 - Bit depth: 16 bits: SNR = 98.08dB
- Blu-ray disc / professional audio
 - Sampling rate: 48 / 96 /192kHz: > 2 x 20 kHz
 - Bit depth: 16 / 20 / 24 bits
- Telephone
 - Sampling rate: 8 / 16 kHz
 - Bit depth: 8 bits